Hydroelectric Power Plants

Hydroelectricity, or hydroelectric power, is electricity produced from hydropower. In 2015, hydropower generated 16.6% of the world’s total electricity and 70% of all renewable electricity and was expected to increase by about 3.1% each year for the next 25 years.
The technical potential for hydropower development around the world is much greater than the actual production: the percent of potential hydropower capacity that has not been developed is 71% in Europe, 75% in North America, 79% in South America, 95% in Africa, 95% in the Middle East, and 82% in Asia-Pacific. Due to various geopolitical factors, perhaps 25% of the remaining technically exploitable potential can be developed before 2050, with the bulk of that being in the Asia-Pacific area. Some countries have highly developed their hydropower potential and have very little room for growth: Switzerland produces 88% of its potential and Mexico 80%.

The cost of hydroelectricity is relatively low, making it a competitive source of renewable electricity. The hydro station consumes no water, unlike coal or gas plants. The typical cost of electricity from a hydro station larger than 10 megawatts is 3 to 5 US cents per kilowatt hour. With a dam and reservoir it is also a flexible source of electricity, since the amount produced by the station can be varied up or down very rapidly (as little as a few seconds) to adapt to changing energy demands. Once a hydroelectric complex is constructed, the project produces no direct waste, and it generally has a considerably lower output level of greenhouse gases than photovoltaic power plants and certainly fossil fuel powered energy plants.

Generating methods

Conventional (dams)

Most hydroelectric power comes from the potential energy of dammed water driving a water turbine and generator. The power extracted from the water depends on the volume and on the difference in height between the source and the water's outflow. A large pipe (the ``penstock``) delivers water from the reservoir to the turbine.

Pumped-storage

This method produces electricity to supply high peak demands by moving water between reservoirs at different elevations. At times of low electrical demand, the excess generation capacity is used to pump water into the higher reservoir. When the demand becomes greater, water is released back into the lower reservoir through a turbine. Pumped-storage schemes currently provide the most commercially important means of large-scale grid energy storage and improve the daily capacity factor of the generation system.

Run-of-the-river

Run-of-the-river hydroelectric stations are those with small or no reservoir capacity, so that only the water coming from upstream is available for generation at that moment, and any oversupply must pass unused. A constant supply of water from a lake or existing reservoir upstream is a significant advantage in choosing sites for run-of-the-river.

Tide

A tidal power station makes use of the daily rise and fall of ocean water due to tides; such sources are highly predictable, and if conditions permit construction of reservoirs, can also be dispatchable to generate power during high demand periods. Less common types of hydro schemes use water's kinetic energy or undammed sources such as undershot water wheels.

Advantages

Hydropower is a flexible source of electricity since stations can be ramped up and down very quickly to adapt to changing energy demands. Hydro turbines have a start-up time of the order of a few minutes. It takes around 60 to 90 seconds to bring a unit from cold start-up to full load; this is much shorter than for gas turbines or steam plants. Power generation can also be decreased quickly when there is a surplus power generation. Hence the limited capacity of hydropower units is not generally used to produce base power except for vacating the flood pool or meeting downstream needs. Instead, it can serve as backup for non-hydro generators.

The major advantage of conventional hydroelectric dams with reservoirs is their ability to store water at low cost for dispatch later as high value clean electricity. The average cost of electricity from a hydro station larger than 10 megawatts is 3 to 5 US cents per kilowatt-hour. When used as peak power to meet demand, hydroelectricity has a higher value than base power and a much higher value compared to intermittent energy sources.

Hydroelectric stations have long economic lives, with some plants still in service after 50–100 years. Operating labor cost is also usually low, as plants are automated and have few personnel on site during normal operation.

While many hydroelectric projects supply public electricity networks, some are created to serve specific industrial enterprises. Dedicated hydroelectric projects are often built to provide the substantial amounts of electricity needed for aluminium electrolytic plants, for example.

Since hydroelectric dams do not use fuel, power generation does not produce carbon dioxide. Hydroelectricity in Europe produces the least amount of greenhouse gases and externality of any energy source. Coming in second place was wind, third was nuclear energy, and fourth was solar photovoltaic. The low greenhouse gas impact of hydroelectricity is found especially in temperate climates. Like other non-fossil fuel sources, hydropower also has no emissions of sulfur dioxide, nitrogen oxides, or other particulates.